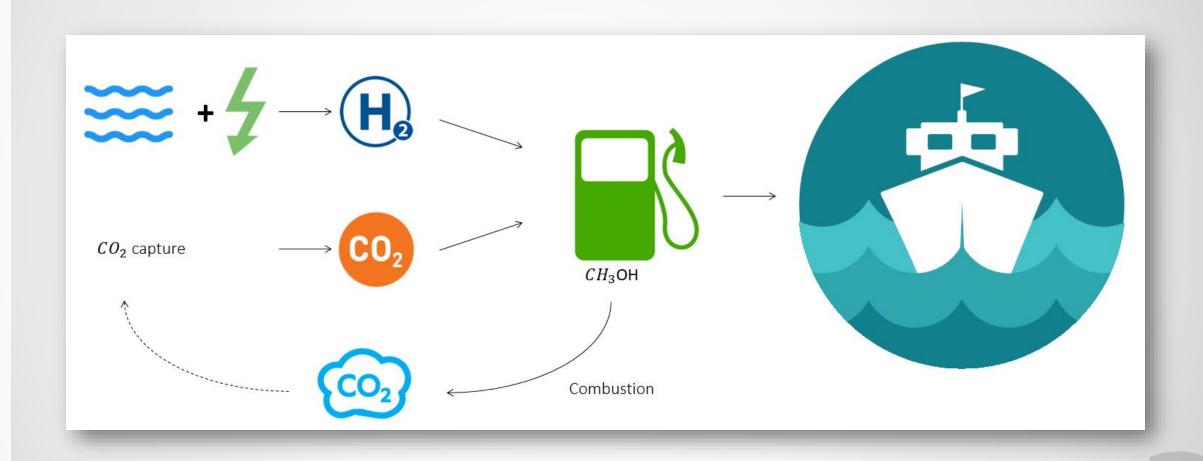


Project introduction

SEASTWATTER

Triple S criteria for choice of ship propulsion


Suitable energy carriers and powertrains to ensure long term solutions for (waterborne) transport?

Must be:

- Sustainable
 - closed cycle for energy carrier and materials of powertrain
- Scalable
 - use abundantly available (and therefore cheap) resources
- Storable
 - sufficiently compact, i.e. high energy and power density
- → we need renewable, "solar" fuels (electrofuels, e-fuels, "liquid electricity", ...)

STEWATER

Project core idea

SEASTIWATER

Challenges to be tackled by the project

- Four-stroke methanol engines, and retrofits of marine engines to methanol operation, not commercially available
 - i.e. power range 100 kW 10 MW

- No demonstration of the full chain of renewable methanol production to ships sailing on it
 - Production distribution bunkering sailing

- Rules and regulations not mature yet
 - Need practice, on different vessel types, need to be challenged if required

PFASTWATTER

Objectives

Retrofit

Next generation

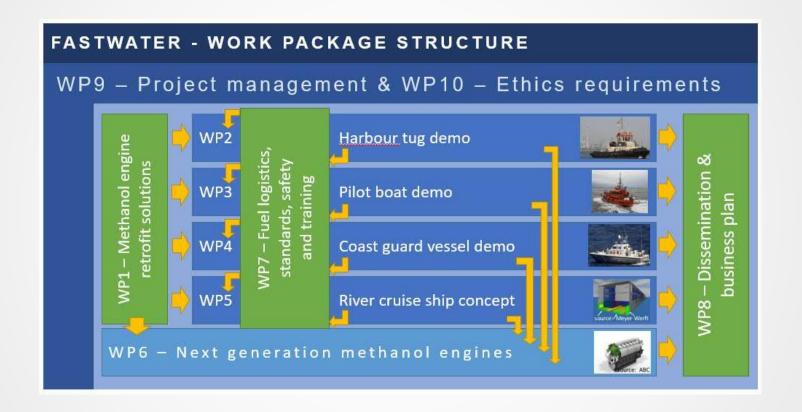
Supply chain

Rules and regulations

Training

Assessment

Commercialise



Work-package structure

Partners

Timeline: 01.06.2020 – 31.5.2024

Budget: 6.3 mill. EURO

Universities and research institutes

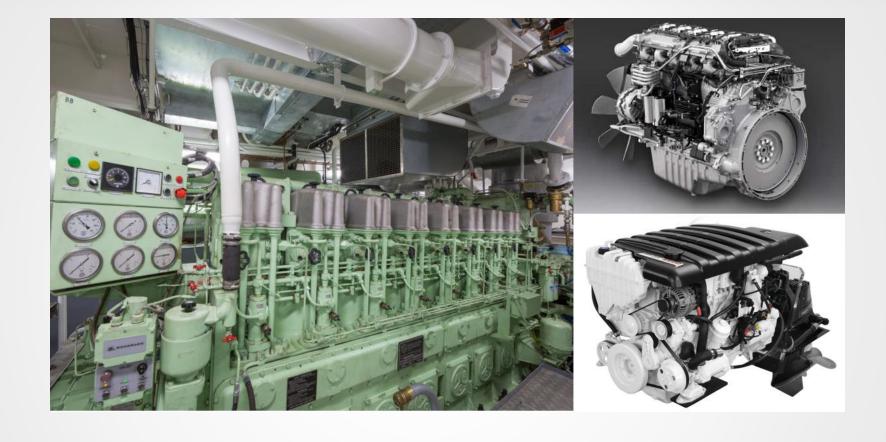
Naval architects and consultancies

Engine manufacturers and equipment suppliers

Fuel supplier and distributor methonex

Shipyards

Classification society



Fleet owners Port authority / administrations

RETROFIT

Develop and demonstrate universal, scalable retrofit kits for converting ships to methanol use for a wide power range (200 kW – 4 MW)

SEASTWATTER

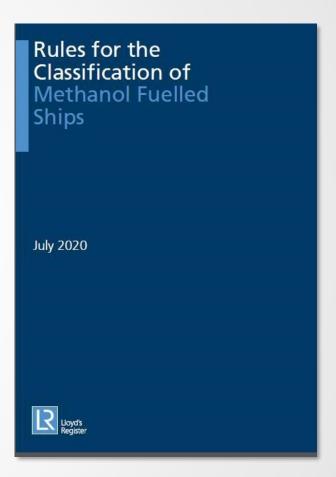
Next Generation

Develop the next generation of methanol-fuelled engines for further advances in efficiency, and further reductions in emissions and cost

SEASTIVATIER

Supply Chain

Demonstrate the complete supply chain from renewable methanol producers to ship bunkering, including setting up bunkering procedures for safe and efficient bunkering in a port environment



Rules and Regulations

SEASTIVATER

Work with regulatory agencies to develop rules & regulations for methanol as a fuel (including a methanol fuel standard)

SEASTIVATER

Training

Develop a training programme for crew, gain experience with it during the project, and formulate best practices for use beyond FASTWATER

SEASTIVATIER

Demonstrate the feasibility in demo-case tests

Project indicative timeline

M 1-18 Develop

M 13-30 Implement/demonstrate

M 23-44 Measure/Operation

M 31-48 Road-show & roll-out

- \bigcirc Tug sailing Q2 \rightarrow Q4 2022
- Pilot boat sailing Q3 2022 → Q1 2023
- Coast guard vessel sailing Q1 → Q4 2023
- ABC DF engine commercially available Q3 2022
- SCA MD95 engine commercially available Q1 2021
- HZM retrofit commercially available Q3 2022

0

ррі

-

4

S

0

zi

S

S

0

B

VISION ROADMAP

To sustainable powertrains for shipping

- Via electrification (battery electric systems & hybridization)
- Via sustainable fuels & conversion technologies

DEFOSSILIZING METHANOL

DEVELOPING METHANOL ENGINE TECHNOLOGY FASTWATER Commercial introduction of pe Commercial (1) MD95, (2) PFI-DF, (3) Retrofit kits introduction of best option(s) for Evaluation of advanced engine technology: advanced methanol MD100, PFI-SI, DI-DF, DI-SI engines 2020 2024 2026 2022 TRL 3-5 TRL 4-6 TRL 5-7 TRL 6-9

Out of scope

Fastwater

Project outcomes benefiting other initiatives

- High and medium speed methanol engines commercially available
- Engine retrofit kit commercially available
- Real life demonstrators that can be visited to get a hands-on feel for practical applications
- Tested training material for crew and on-shore personnel
- Simplified rules and regulations
- Renewable methanol supply chains
- Business plans to support investment decisions

Follow us

www.fastwater.eu

FASTWATER@fastwater2020

Contact

SEASTEWATER

Name: Sebastian Verhelst

Position: Assoc. Prof.

Organisation: Lund University

Address: Ole Römers väg 1, M-huset, SE-22100 Lund

Telephone: +46 46 222 79 00

Mail: sebastian.verhelst@energy.lth.se

Web: energy.lth.se

